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A solution is found for the problem of the steady temperature field in a uniform eccentric annular layer
with constant internal heat release.

Consider the region included between eccentric circles of radius Ry and Rp. Let Ry > Ry and let the centers of the
circles x¢ lie on the positive branch of the abscissa axis, so that x¢, > X¢y. In this notation the eccentricity e of the an-
nulus may be written as

€= ('\‘cz_ '\'cl )/(Rz - Rl)
For this geometry it is necessary to solve the Poisson equation
At (x, y) = q,A (1)
when q,, /A = const.
Let us introduce the function 7 (x, y) :={(x, y) -'- ¢, x*/2k, for which the equation
AT (v, y)=0 (2
is valid. We shall solve (2) in bipolar coordinates E, 7, introduced in the form

G (10r—a) g (b e gt 0SE,

(3)
2
v, == arctg L —- 0« %< 2= “4)
X2 !/2 —a
or
v =(1—8)a/(l —2&cos ! E?), (5)
y=2atsinn(1—2Ecosy -~ £2). (6)
A description of bipolar coordinates may be found, for example, in [1].
The coordinate lines § = const are a family of eccentric circles, whose centers lie on the x axis:
xe=a(l+ 81— 8), E=1[1 - @rP]2—ar. M
The coordinate lines n = const are also a family of eccentric circles; their centers lie on the y axis
Yo =actgy, r=a/siny]. (8)

Knowing Ry, Rp. and e, we can choose o so that the boundaries of the annulus coincide with the coordinate lines
£ = const:

a = (1/2e) {[R, (146" -Ry(1—e?)]* —4e* R?} 2 =
=(1/2¢){ [R, (1—€*)--R, (1--€*)*- -4e® R2 )72, (9

It should be noted that when e = 1 the bipolar coordinate system loses its meaning, since then o = 0 and by (3) any point
on the plane (X, y) has coordinates £ = 1. 1 = 0. In bipolar coordinates Eq. (2) may be written as

AR \[., #T .oT  &T
R i — —_— e =0
" ( 2 cosn)[g e tﬁag | 61,2] (10)
or
0T 0
AN )
) 0k om



The general solution of this equation may be found by the method of separation of variables [2]:

T (&) = Ay+By In& + YI(4, & + B, &) cos n1-4(C, &+ D,E-")sin n ], a
n=1
HE ) = T(E ) — 247 (5, 7). (12)

Using the Fourier expansion of x2(E, 1) (an even function with respect to 1) [3], we write
a e
M = Ap-+BoIn — -°2L§)— +E{ [4, &*+B, E"—a, (8)] cos n -+
‘ n=1

+[Cn §'f+Dn E_n] sinn | },

(13)
where
o e 2
a,(t) = q” ¢ cosnndn =
2% | 1-—2Ecosv+E?
201 2)2 kg 2 £2
qva(l E COSﬂ“fld“’l qvag [(n—l—l) (_1)&2] (14)

mh ) (1—2§ cos 7}4—52)2 %452
(n=0,1...).
In the case of boundary conditions of the first kind, i.e., when the temperature on the boundary of the region is

given, the unknown coefficients 4y, By, A,, B,, are determined as in the case of a concentric annulus, If the given
boundary conditions are of the second or third kind, then we must bear in mind that

a 1 ot
L el —2 2,
I 2m( +& gcos7) o

i.e., the determination of the unknown coefficients is more complicated.

To illustrate the method, we shall find the temperature distribution in a cylinder with heat release covered with
an eccentric, annular, thermally insulating layer, the outer boundary of which is maintained at constant temperature
to.

In accordance with (16) we write the solution:
a) in the cylinder

b (g ) = Ag— 2 2 [A4,8" —a, (§)lcos n 3 (15)
b) in the covering
ty (5 1) = Bo-L Gy Ing+ YIB, &"+C, & "Icos n . (16
=1

Using the boundary condition £, (§,, 1)=1{y, We obtain

(&, ) = By(1— 11r1§§ )+ ¢ 0] 1n§ EB —E g cos n . an
2

From the joining conditions

. Ot ot
f(Em) = (L), "1"'_“_1' = 2—2‘
on e, on e,

(18)
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we find all the unknown coefficients:

a (&) Ay £
Ay =1, + == B In =2-al(§),
0 01 5 : 27, 3 £ lo(vl)

’

By =ty - &1 In& a5 (),
2k,

Ap= {hla, (G 1 G-HER)™ — R @GN - HE/E)™ X
N BT — (/B ] — g ST H(E/E P,
C, = {nla, (8 )/nlE — W@, (E1) ] X
X G — (/5] — R BT 1 -H(E0/5)71 ), (19)
where
. da,,
@) = EE-'E___E‘_ .

For the specific case (R, = 0,5; R, =5 mm; e =0,5; #, = 0°C; q,/» = 10" m ~3 A, = },) we obtain

Ay — ay (8,)/2 = 0.04600q, 22/},

A& —a; (&) = 0.01005¢, a2,

Ay & —as (8)) = 0.00123g,,a%k,

Ay 8 — ay (&) = 0.000083 g, a*/A,

i.e., the term with n = 3 contributes ~0.13% to the result, The temperature distribution along the axis Ox for e = 0.5
and e = 0,0 is shown in the figure.

When using the above method to calculate the tempera-
t ’ i ture at ¢ K 1 (o> 1) difficulties may arise which are easily
100} / \ - g;g‘f removed by changing from the variable & to the variable 1
/ \ 2 a I or
50 3
/ \ e=1/ 14 () 2= 1L
ol Ab 1 r r 2 a (20)
X
[ |- f—? SN Then, for example, the solution of the problem of an annulus
1 A \l whose boundary is kept at temperature t= 0 is written as
f X, X, ‘
BANES N 1o, = 2 (R—RY) ¢
\ 4% < :
N\ < / 1 R
e gy n(r/ 2 :
X O — (R
Fig. Comparison of temperature distributions in a n (Re/Ry) (21)
heat-generating cylinder covered with an annular
layer of insulator for two different values of the + r R% #R2— 818_2_ " 2| cos 7] -
eccentricity e, « - r

From (6) and (7) we obtain

sing = (1—&%sinv/(l —
—_ 2 E cos 7“ "{"Eﬂ) = Sin 7‘, (22)
i.e., the usual polar coordinate ¢ may be written instead of  in (21) when & < 1,

The last inequality is satisfied when e < 1. If e = (e = 0), Eq. (21) goes over into the formula for the tempera-
ture field in an annulus formed by concentric circles.
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Finally, it should be noted that the method described allows the steady temperature field to be found inside an ec-
centric annulus with heat release for various kinds of boundary condition. This method must not be applied when the ec-

centricity is equal or close to unity, and at eccentricities close to zero, we must convert from the variable § to the vari-
able r (20).

NOTATION
r, ¢—polar coordinates; x, y and §, n—rectangular and bipolar coordinates; X¢;—coordinate of center of i-th

circle; e—eccentricity of annulus; t, A, qy—temperature, thermal conductivity, and internal heat release, respective-
ly.
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